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Abstract Correctly calculating the timing and amount of crop irrigation is crucial for capturing irrigation
effects on surface water and energy budgets and land‐atmosphere interactions. This study incorporated a
dynamic irrigation scheme into the Noah with multiparameterization land surface model and investigated
three methods of determining crop growing season length by agriculture management data. The irrigation
scheme was assessed at field scales using observations from two contrasting (irrigated and rainfed)
AmeriFlux sites nearMead, Nebraska. Results show that crop‐specific growing‐season length helped capture
the first application timing and total irrigation amount, especially for soybeans. With a calibrated soil‐
moisture triggering threshold (IRR_CRI), using planting and harvesting dates alone could reasonably
predict the first application for maize. For soybeans, additional constraints on growing season were required
to correct an early bias in the first modeled application. Realistic leaf area index input was essential for
identifying the leaf area index‐based growing season. When transitioning from field to regional scales, the
county‐level calibrated IRR_CRI helped mitigate overestimated (underestimated) total irrigation amount in
southeastern Nebraska (lower Mississippi River Basin). In these two heavily irrigated regions, irrigation
produced a cooling effect of 0.8–1.4 K, a moistening effect of 1.2–2.4 g/kg, a reduction in sensible heat flux by
60–105 W/m2, and an increase in latent heat flux by 75–120 W/m2. Most of irrigation water was used to
increase soil moisture and evaporation, rather than runoff. Lacking regional‐scale irrigation timing and
crop‐specific parameters makes transferring the evaluation and parameter‐constraint methods from field to
regional scales difficult.

1. Introduction

Irrigated agriculture applied on ~20% of global croplands contributes to ~40% of the world's food
production (Siebert & Döll, 2010), which consumes about 70% of global total freshwater withdrawals
and constitutes the largest share (~90%) of consumptive water use (Food and Agriculture
Organization, 2010). In the United States, about 55.8 million acres of farmland were irrigated in 2012
and the irrigation withdrawals were 115 billion gallons per day (Maupin et al., 2014). Facing increased
demand for food and water and the adverse climate impacts on water availability (Schewe et al., 2014;
Vörösmarty et al., 2000), it is imperative to advance the understanding of the human‐perturbed
agriculture‐water‐climate interactions for addressing challenges such as food security and water scarcity
in sustainable ways.

Observations (e.g., Bonfils & Lobell, 2007; Chen et al., 2018; Mahmood et al., 2006) and model simula-
tions (e.g., Boucher et al., 2004; de Rosnay et al., 2003; Haddeland et al., 2006; Kueppers et al., 2007;
Leng et al., 2013; Ozdogan et al., 2010; Pokhrel et al., 2012; Sacks et al., 2009) have demonstrated the
important role of irrigation in modifying land surface water and energy budgets and subsequently local
and regional weather and climate. For instance, irrigation reduced near‐surface air temperature by
decreasing (increasing) surface sensible (latent) heat fluxes (e.g., Chen et al., 2018; Cook et al., 2015;
Haddeland et al., 2006; Leng et al., 2013; Ozdogan et al., 2010; Pei et al., 2016; Qian et al., 2013; Sacks
et al., 2009). Wetter soils and higher latent heat fluxes led to higher atmospheric water vapor (Boucher
et al., 2004), which in turn could enhance cloud cover and downwind precipitation (Cook et al., 2015;
Pei et al., 2016; Qian et al., 2013). At large scales, the irrigation effects were more complicated as a result
of interactions among multiscale atmospheric and land processes (Pei et al., 2016). For example, extensive
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irrigation over the Indian peninsula delayed the South Asia summer monsoon onset and weakened the
monsoon flow by reducing land‐sea thermal contrasts, leading to less oceanic moisture transport and a
redistribution and/or reduction of summer rainfall (e.g., Cook et al., 2015; Douglas et al., 2009;
Guimberteau et al., 2012; Lee et al., 2011; Puma & Cook, 2010; Saeed et al., 2009; Shukla et al., 2014;
Tuinenburg et al., 2014).

Applying a realistic irrigation scheme is important for obtaining a more reliable and quantitative estimate
of the irrigation effects on climate (Sorooshian et al., 2011). Recent irrigation modeling in climate models
shows significant discrepancies in the magnitudes of cooling or moistening induced by irrigation (e.g.,
Boucher et al., 2004; Lobell et al., 2006; Sacks et al., 2009). To a large degree, such discrepancies are
related to how the irrigation models determine the irrigation water amount and timing. Some studies
used available estimates of the evapotranspiration flux due to irrigation (e.g., Boucher et al., 2004) or
the daily/annual irrigation amount (e.g., Cook et al., 2015; Lee et al., 2011; Puma & Cook, 2010; Sacks
et al., 2009; Shukla et al., 2014) from earlier reports (e.g., Döll & Siebert, 2002; Wisser et al., 2010) as
model input. Some other studies set the root‐zone soil moisture (SM) over irrigated tiles to a critical value
(e.g., soil saturation or field capacity) at every time step, year round (e.g., Kueppers et al., 2007; Lobell
et al., 2009; Saeed et al., 2009; Tuinenburg et al., 2014), resulting in overestimations in modeled irrigation
water amounts.

Recently, more complex irrigation parameterizations have been incorporated into various host land surface
models (LSMs; Nazemi &Wheater, 2015; Pokhrel et al., 2016; McDermid et al., 2017), by using the “SM def-
icit” approach to dynamically represent irrigation implementations. For example, Ozdogan et al. (2010)
checked three trigger criteria daily at 0600 local time (LT), that is, irrigated tile, growing season (defined
by a threshold of 40% of annual range of greenness fraction), and root‐zone SM availability (SMA) and com-
puted the irrigation water demand by subtracting the current root‐zone SM from field capacity (i.e., “SM def-
icit”). The extent of irrigated regions was identified by using the Moderate Resolution Imaging
Spectroradiometer (MODIS)‐based irrigated fractional area map (~500 m; Ozdogan & Gutman, 2008) as
model input to the Noah LSM (Chen et al., 1996). Leng et al. (2013) also considered irrigation applications
for the C3 generic crop in the Community Land Model. But they defined the growing season with crop leaf
area greater than zero and employed a deficit from target SM content (SMC) rather than field capacity in
Ozdogan et al. (2010). Sorooshian et al. (2011, 2012, 2014) used a similar deficit algorithm and constrained
irrigation applications with downward solar radiation less than 50 W/m2 and soil temperature greater
than 10°C.

There are two major deficiencies in the current approach to modeling irrigation: (1) prior studies evaluated
models against the county‐level total irrigation water withdrawals but rarely evaluated the timing of irriga-
tion and modeled at field scales and (2) lack of systematic assessment of impacts of auxiliary input data on
constraining model performance. Therefore, this study explored these issues by incorporating a dynamic
irrigation scheme into the Noahwithmultiparameterization (Noah‐MP) LSM (Niu et al., 2011) using numer-
ous agriculture management data sets and evaluated it at both field and regional scales. The control and opti-
mization of various irrigation‐model parameters were also assessed when transitioning from field scales to
continental scales.

The rest of this paper was organized as follows. Section 2 presented data and methodology, including field
observations and regional agriculture management data for model input and verification, and the dynamic
irrigation scheme. Section 3 focused on the model performance evaluation at field and regional scales and
analyzed the influence of agriculture management data as well as model sensitivities to various irrigation
parameters. Finally, conclusions and some discussions were provided in section 4.

2. Data, Model, and Methodology
2.1. Agriculture Management Data

Compared to previous irrigationmodeling studies, one unique aspect of this study is to integrate diverse agri-
culture management data and explore their impacts on constraining model solutions. For instance, to deter-
mine the extent of irrigation, we used the 500‐mMODIS‐based global map of irrigation fraction (hereinafter
Firr; Ozdogan & Gutman, 2008), which has been validated against agricultural statistics at the state and
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county levels and widely used in modeling studies (e.g., Leng et al., 2013; Ozdogan et al., 2010; Qian et al.,
2013). Figure 1a shows the fractional area of irrigated lands on the 4‐km grid‐spacing modeling domain
used in this study. The choice of this modeling domain was somewhat arbitrary and aimed to include the
Corn Belt in the Central Great Plains and croplands in the Lower Mississippi River Basin (LMRB) and to
address the temperature warm‐bias issue in convection‐permitting regional climate modeling (Liu et
al., 2017).

Irrigation applications are usually crop specific (McDermid et al., 2017), and each type of crop has distinct
irrigation timing and water requirements. To capture such regional variability, this study used the following
crop‐specific agriculture management data to constrain the irrigation modeling:

1. Thirty‐meter CropScape data from the U.S. Department of Agriculture's (USDA) National Agricultural
Statistics Service (NASS)/George Mason University (https://nassgeodata.gmu.edu/CropScape/), which
is a georeferenced, crop‐specific land cover data layer created for the contiguous United States using
satellite imagery and extensive agricultural ground truth. This dataset was used to calculate the fractional
coverage of total cropland (relative to the grid cell's vegetated area; hereinafter Fcrop) and of each crop
type (relative to the grid cell's total cropland area; hereinafter Fmaize, Fsoybean, Fwheat, and Fcotton, see
Figures 1c‐1f).

Figure 1. (a) The Moderate Resolution Imaging Spectroradiometer (MODIS)‐based fractional area of irrigated lands. (b)
Dominant crop type over irrigated grids. (c‐f) The fractional coverage of each crop type (i.e., maize, soybean, winter wheat,
and cotton).
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2. USDA/NASS state‐level maps of usual planting and harvesting dates, which indicate the periods in
which the crops were planted or harvested in most years based on 20 years of historical crop progress esti-

mates and the knowledge of industry specialists, for four major field
crops (i.e., maize, soybean, winter wheat, and cotton). To be specific,
this study employed themedium dates of NASS‐reported “most active”
ranges (National Agricultural Statistics Service, 2010) as model input
planting and harvesting dates (see Figure 2), which indicate when
between 15% and 85% of the crop is planted or harvested. Here, blank
areas within the study domain (as shown by red lines in Figure 2) indi-
cate no data due to the absence of the crop in those states (see
Figures 1c‐1f).

3. Global 1‐kmMODIS climatology leaf area index (LAI), which has been
widely employed as input dataset for the Weather Research and
Forecasting (WRF) model.

2.2. Irrigation Model Description

Numerical experiments for both field‐scale and regional‐scale were per-
formed with the offline version of the Noah‐MP LSM (Niu et al., 2011)
running within the High‐Resolution Land Data Assimilation System
(HRLDAS v3.9; Chen et al., 2007). HRLDAS is a highly efficient and

Figure 2. State‐level maps of usual planting (left panels) and harvesting (right panels) dates (in Julian day format) for (a
and b) maize, (c and d) soybean, (e and f) winter wheat, and (g and h) cotton.

Table 1
Irrigation Scheme Parameters

Parameter Description

IRR_CRI irrigation trigger criterion, soil water availability
percentage [0‐1]

IRR_LIM daily maximum amount to irrigate, mm

IRR_LAI minimum LAI to trigger irrigation

IRR_GDD minimum growing degree days to trigger
irrigation, crop‐specific

IRR_FRC irrigation fraction above which to activate [0‐1]

IRR_BEG irrigation start time, local time

IRR_LEN irrigation duration, hours

IRR_HAR days before harvesting to stop irrigation

IRR_PCP precipitation rate when irrigation
stops, mm/hr

Abbreviations: GDD, growing degree day; LAI, leaf area index.
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parallelized LSM driver that can be executed for a single point (e.g., field‐scale simulations) and for con-
tinental scales. It has evolved from a soil‐state initialization tool to an efficient framework to test and
evaluate the LSM (e.g., Gao et al., 2015; Li et al., 2018; Osuri et al., 2017; Xin et al., 2018; Zhang et al.,
2016).

As a new development to Noah‐MP, a dynamic irrigation scheme was incorporated, and Table 1 documents
the various irrigation model parameters. Sprinklers are used on 68% of farms and irrigate 80% of the total
farmland acreage in the Central Great Plains states (National Agricultural Statistics Service, 2009); so the
irrigation scheme developed here mainly focused on sprinkler practice. For a given irrigation method
(e.g., sprinkler considered in this study), the irrigation timing and amount are the two key aspects of irriga-
tion modeling (Ozdogan et al., 2010). Here, the SM deficit approach was employed as a basic irrigation trig-
ger as in previous studies (e.g., Leng et al., 2013; Ozdogan et al., 2010), but the growing season wherein
irrigations were applied was defined in different ways with the inclusion of crop‐specific management data.
To simulate crop irrigation, each grid cell of the model was divided into irrigated (Firr) and nonirrigated frac-
tions according to 500‐m MODIS‐based irrigation fraction (Ozdogan & Gutman, 2008), and the area of irri-
gated cropland (hereinafter Firr‐crop) took the smaller value of Firr and Fveg·Fcrop (cropland fraction relative
to the model grid cell's total area; Leng et al., 2013).

F irr‐crop ¼ min F irr;Fcrop⋅Fveg
� �

: (1)

For the irrigated cropland tile, the root‐zone SMA was defined as the ratio of the current root‐zone available
SM (defined as the difference to the wilting point SMwlt) and nonstress SM (defined as the difference
between field capacity (SMref) and SMwlt).

SMA ¼ SM−SMwltð Þ= SMref−SMwltð Þ: (2)

Irrigation would be activated if (1) Firr‐crop > IRR_FRC (irrigation fraction threshold, Table 1), (2) the date
was during the growing season, (3) SMA < IRR_CRI (SM trigger; Table 1), and (4) precipitation rate <
IRR_PCP (a parameter to stop irrigation on rainy days; Table 1).

The growing season was defined in three ways: (1) from planting to maturing stage using IRR_HAR to repre-
sent the days before harvesting (Table 1) or (2) as in (1) but using an additional constraint LAI > IRR_LAI
(LAI threshold, Table 1) or (3) from planting to maturing stage combined with growing degree days (GDD;
Liu et al., 2016) higher than IRR_GDD (GDD threshold; Table 1). In the first method, the input state‐level
maps of crop‐specific planting and harvesting dates were used to determine crop‐specific growing season,
crucial for crop‐specific irrigation modeling. In the third method, the GDD‐based growing season enabled
the explicit consideration of crop growth stages. Compared to simple use of input‐LAI in the second method,
calculating GDD at each time step in irrigation modeling allowed for dynamic interactions between crop
growth and irrigation.

These criteria were daily checked, and if irrigation was triggered, the potential irrigation amount for that
day was computed as the water amount by subtracting the current root‐zone SM from the reference point
SMref. The parameter IRR_LIM was used to determine the daily maximum water amount for irrigation,
which was mostly associated with irrigation systems (central pivot in this case). Here, it was set to 35
mm as default value based on observations from the irrigated AmeriFlux USNe2 site (see black lines in
Figure 6a‐6d or Fig. S1 in the supporting information). Therefore, the actual irrigation water amount
(IWA, equation (3) below) took the smaller value of (SMref ‐ SM) and IRR_LIM and would be added to
precipitation input at a uniform rate over a prescribed length of time (determined by IRR_LEN and
IRR_BEG, Table 1), that is, four hours after 6 a.m. LT as default here similar to Ozdogan et al. (2010)
and Leng et al. (2013).

IWA ¼ min SMref−SM; IRR LIMð Þ: (3)

The above irrigation scheme would be executed for each crop type (if present) in each irrigated grid cell to
obtain the irrigation water amount for maize (IWAmaize), soybean (IWAsoybean), winter wheat (IWAwheat),
and cotton (IWAcotton), respectively. Finally, the tile‐area‐weighted grid cell total irrigation water amount
(IWAtot) was computed as
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IWAtot ¼ F irr‐crop⋅ IWAmaize⋅Fmaize þ IWAsoybean⋅Fsoybean þ IWAwheat⋅Fwheat þ IWAcotton⋅Fcotton
� �

;

if F irr>Fcrop⋅Fveg;

(

(4)

IWAtot ¼ Firr‐crop⋅
Firr

Fcrop⋅Fveg
⋅ IWAmaize þ Fmaize⋅IWAsoybean þ Fsoybean⋅IWAwheat þ Fwheat⋅IWAcotton⋅Fcotton
� �

;

if Firr≤Fcrop⋅Fveg:

8
<

:

(5)

Table 2
Design of Field‐Scale Numerical Experiments

Experiment Irrigation parameters Data used Objective

CRI0.7 IRR_CRI = 0.7, IRR_LIM = 35,

IRR_LAI = 0.0, IRR_FRC = 0.0, To test the model sensitivity
to IRR_CRIIRR_BEG = 6, IRR_LEN = 4,

IRR_HAR = 20, IRR_PCP = 1.0 Observed LAI, and planting
and harvesting datesCRI0.6 Same as CRI0.7, but with IRR_CRI = 0.6

CRI0.5 Same as CRI0.7, but with IRR_CRI = 0.5

LAI0.0 Same as CRI0.7, but with IRR_CRI = 0.65 To test the model sensitivity to IRR_LAI

LAI0.8 Same as LAI0.0, but with IRR_LAI = 0.8

LAI1.6 Same as LAI0.0, but with IRR_LAI = 1.6

GDD0 Same as LAI0.0, but with IRR_GDD
criterion instead of IRR_LAI, and IRR_GDD = 0 To test the model sensitivity

to IRR_GDDGDD1 Same as GDD0, but with IRR_GDD = 400

GDD2 Same as GDD0, but with IRR_GDD = 800

TCRI0.7 TCRI0.6 TCRI0.5 Same as CRI0.7, CRI0.6, and CRI0.7, respectively

Default LAI, and planting
and harvesting dates

To test the model sensitivity
to LAI input

TLAI0.0 TLAI0.8 TLAI1.6 Same as LAI0.0, LAI0.8, and LAI1.6, respectively

TGDD0 TGDD1 TGDD2 Same as GDD0, GDD1, and GDD2, respectively

TLNoPH0.0 TLNoPH0.8
TLNoPH1.6

Same as TLAI0.0, TLAI0.8, and TLAI1.6, respectively To test the model sensitivity to
planting and harvesting datesDefault LAI

TGNoPH0 TGNoPH1
TGNoPH2

Same as TGDD0, TGDD1, and
TGDD2, respectively

OPTM‐LAI Same as LAI0.0, but with IRR_LAI = 0.0
for maize, and IRR_LAI = 1.5 for soybean

Observed LAI, and planting
and harvesting dates

To optimize the field‐scale i
rrigation modeling

OPTM‐GDD Same as GDD1, but with IRR_GDD=0
for maize, and IRR_GDD=650 for soybean

Abbreviations: GDD, growing degree day; LAI, leaf area index.

Table 3
Design of Regional‐Scale Experiments

Experiment Irrigation constrain Irrigation parameters Data used Objective

Soil moisture deficit plus the
growing season determined
by planting and harvesting
dates

MODIS‐based climatology LAI,
crop‐specific planting and
harvesting dates, and crop
fractional areas

To serve as a reference run with
the calibrated irrigation parameters
at the field scale

Same as LAI0.0, IRR_CRI
= 0.65 for all four crop
types

CNTL

To obtain a realistic simulation
of irrigation water amount
at the regional scale

OPTM2D Same as CNTL Same as CNTL, but with
calibrated IRR_CRI at
the county level

MODIS‐based climatology LAI,
crop‐specific planting and harvesting
dates, and crop fractional areas

NOIRR Turn off the irrigation scheme To serve as a reference run

Abbreviations: LAI, leaf area index; MODIS, Moderate Resolution Imaging Spectroradiometer.
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2.3. Evaluation Data and Numerical Experiments
2.3.1. Forcing and Evaluation Data
As the first step, field‐scale simulations were performed to evaluate the dynamic irrigation scheme and its
sensitivities to associated parameters. Such evaluation usedmeasurements from two contrasting agricultural
AmeriFlux sites, namely, USNe2 (irrigated, 41°09′53.5″N, 96°28′12.3″W, 362 m) and USNe3 (rainfed, 41°10′
46.8″N, 96°26′22.7″W, 363 m) near Mead, Nebraska (see the black star in Figure 1a). Those two sites, within
1.6 km from each other, are located over a flat and relatively homogeneous environment. They are charac-
terized by the same silty‐clay‐loam soils and undergo the same rotation of maize and soybean. Except for the
lower planting density at the rainfed USNe3 site, the only meaningful difference between the two sites for a
given year is irrigation (Chen et al., 2018; Verma et al., 2005). More detailed site information can be found in
Verma et al. (2005) and Suyker and Verma (2012). The irrigated field (USNe2) is equipped with central‐pivot
irrigation systems. Most central‐pivot provides irrigation water 25‐40 mm (1‐1.5 inches), and the maximum
irrigated water of 35 mm in our analysis was set for IRR_LIM.

Atmospheric forcing conditions were from hourly gap‐filled near‐surface meteorological data collected at
the rainfed USNe3 site. They included air temperature, humidity, pressure, wind speed, downward solar
and longwave radiation, and precipitation. The recorded biological data at USNe3, for example, LAI and
planting and harvesting dates, were used to define the growing season in HRLDAS. The recorded irrigation
applications (including timing and amount; see black lines in Figure 6a‐6d or Fig. S1) for the nearby irrigated
USNe2 site were used to evaluate the field‐scale irrigation modeling.

For regional simulations, we used meteorological forcing conditions derived from the North American Land
Data Assimilation System (NLDAS; Cosgrove et al., 2003) forcing dataset at 0.125° and hourly resolutions.

Figure 3. (a‐d) Observed (black dots for USNe3 and triangles for USNe2) and default (blue lines) table leaf area index
(LAI; unit: m2/m2) as model input for 2002‐2005. The red lines represent linearly interpolated time series of observed
LAI for USNe3. (e‐h) Observed (black lines) and modeled (color lines) accumulated irrigation water amount (IWA; unit:
mm) for CRI0.7, CRI0.6, and CRI0.5 runs. (i‐l) Same as (e)‐(h) but for TCRI0.7, TCRI0.6, and TCRI0.5 runs.
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Precipitation was generated by combining observations from field stations and Stage IV precipitation
retrievals from Next Generation Weather Radar Systems and satellites. Initial fields were interpolated
spatially and temporally to the NLDAS grid from the North American Regional Reanalysis (NARR;
Mesinger et al., 2006). An elevation adjustment was applied to the surface pressure, longwave radiation,
and near‐surface air temperature and humidity fields to account for discrepancies in topography between
the NLDAS and NARR grids.

For regional model evaluation, we used the total freshwater withdrawal data for irrigation at the county level
for the year 2000 (Figure 7a below) from the U.S. Geological Survey (USGS; available at https://water.usgs.
gov/watuse/data/2000/), which was widely used in irrigation model evaluation (e.g., Leng et al., 2013;
Ozdogan et al., 2010).
2.3.2. Experiment Design
To evaluate the performance of the dynamic irrigation scheme as well as its sensitivities to irrigation para-
meters, a number of field‐scale simulations listed in Table 2 were conducted from 15 June 2001 to 31
October 2004. A 10‐year spin‐up period was used to ensure the SM and temperature reach an equilibrium
state. Simulation results for two complete soybean (i.e., 2002 and 2004) and maize (i.e., 2003 and 2005) years
were analyzed. The first set of experiments, that is, CRI0.7, CRI0.6, and CRI0.5, were to test the irrigation
model sensitivity to the root‐zone soil water availability trigger and to obtain a reasonable simulated

Table 4
The First and Last Irrigation Application Timing (Julian Date) and Total Number of Events for 2002–2005

2002 (soybean) 2003 (maize) 2004 (soybean) 2005 (maize)

First Last Total First Last Total First Last Total Firsta Last Total

OBS (USNe2) 192 226 6 184 245 12 212 261 6 174 239 10

OPTM‐LAI 190 225 8 182 249 10 203 259 6 174 254 10

OPTM‐GDD 190 255 8 182 249 10 213 259 6 174 245 10

CRI0.7 152 255 13 178 249 12 185 257 8 171 270 13

CRI0.6 176 223 7 185 251 10 211 250 5 177 255 9

CRI0.5 197 224 3 196 242 6 223 258 3 185 260 7

TCRI0.7 142 256 16 169 249 12 157 257 11 144 259 13

TCRI0.6 157 224 11 181 248 11 183 256 7 174 256 9

TCRI0.5 173 216 6 187 242 7 204 250 4 183 254 6

LAI0.0 160 225 9 182 249 10 203 259 6 174 254 10

LAI0.8 180 221 7 182 250 11 203 259 6 174 254 10

LAI1.6 191 222 7 182 241 9 202 250 6 174 252 9

TLAI0.0 142 222 12 177 250 11 163 249 8 171 261 11

TLAI0.8 142 222 12 177 250 11 163 249 8 171 261 11

TLAI1.6 157 223 11 177 250 11 163 249 8 171 253 10

TLNoPH0 142 269 13 177 251 12 163 257 9 171 277 12

TLNoPH0.8 142 269 13 177 251 12 163 257 9 171 257 11

TLNoPH1.6 157 223 11 177 250 11 163 249 8 171 253 10

GDD0 160 222 9 182 249 11 203 259 6 174 245 10

GDD1 175 223 8 182 248 11 203 259 6 174 245 10

GDD2 200 222 5 207 250 9 225 258 5 194 256 9

TGDD0 155 222 11 178 250 12 183 250 9 171 248 10

TGDD1 175 222 10 180 246 10 195 258 7 171 245 10

TGDD2 200 222 6 207 248 8 226 259 6 194 244 7

TGNoPH0 155 222 11 178 250 12 183 264 10 171 256 10

TGNoPH1 175 222 10 180 280 11 196 263 8 171 256 11

TGNoPH2 200 222 6 207 248 8 226 259 6 194 244 7

aNote that the recorded first irrigation application for 2005 was on 9 May (129 in Julian date), with a relatively low water amount of ~12 mm. The second appli-
cation was implemented ~45 days later. Thus, the second application timing was used here for the evaluation of modeled irrigation timing.
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irrigation amount at the field scale. Two more sets of runs with the LAI‐based (i.e., LAI0.0, LAI0.8, and
LAI1.6) and GDD‐determined (i.e., GDD0, GDD1, and GDD2) growing season were performed to assess
impacts of different approach in defining growing season on simulated irrigation. In addition, all the
above simulations were repeated with default table LAI values and with or without input planting and
harvesting dates. Finally, two optimized runs, that is, OPTM‐LAI and OPTM‐GDD, were conducted with
calibrated irrigation parameters, based on the LAI‐determined and GDD‐based growing season, which
captured well the actual irrigation applications at USNe2.

Regional simulations (see Table 3) were performed from 1 October 1998 to 31 October 2000, with 10‐year
spin‐up periods. Results for the year 2000 were used for model evaluation against the USGS county‐level
total irrigation withdrawal data (see Figure 7a below). The reference CNTL run was performed with the
growing season determined by planting and harvesting dates only, and irrigation parameters were calibrated
by field‐scale simulations (e.g., IRR_CRI = 0.65 for all four crop types considered here). Considering that the
SMA trigger (i.e., IRR_CRI) may vary spatially (Sorooshian et al., 2012), the OPTM2D run employed the
county‐level calibrated thresholds of IRR_CRI (see text in section 3.2 and Figure 8a below). NOIRR was a
reference run for analyzing the modeled effects of irrigation. Note that actual irrigation timing was not avail-
able at regional scales, and only the annual total irrigation water amount was evaluated in this study.

3. Results and Discussions
3.1. Field‐Scale Irrigation Modeling

In this section, we first examined the roles of different SM trigger criteria in modeled irrigation timing and
amount for two complete soybean and maize years. Figures 3a‐3d show distinct growth characteristics for
those two crops (e.g., peak LAI is reached faster for maize than for soybeans). To quantify the model

Figure 4. (a‐d) Same as Figures 3e‐3h but for LAI1.6, LAI0.8, and LAI0.0 runs, unit: mm. (e‐h) Same as (a‐d) but for
TLAI1.6, TLAI0.8, and TLAI0.0 runs, unit: mm. (i‐l) Same as (e)‐(h), but for TLNoPH1.6, TLNoPH0.8, and TLNoPH0.0
runs, unit: mm.
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performance in irrigation timing, we analyzed three irrigation features: the total number of applications and
dates of the first and last application (Table 4). Note that it usually takes 2‐3 days for a center pivot to irrigate
the entire crop field.

The root‐zone SMA is perhaps the most essential trigger for irrigation. With observed LAI values as model
input (red lines in Figures 3a‐3d), using IRR_CRI = 0.7 seemed to trigger irrigation too soon for soybean
(Figures 3e and 3g) and to overestimate the total irrigation amount for both soybean and maize
(Figures 3e‐3h). IRR_CRI = 0.6 slightly underestimated the total irrigation water use for 2003 and 2004,
although the dates of the first irrigation application were reasonably captured (Figs 3f and 3g). Using
IRR_CRI = 0.5, such as in Ozdogan et al. (2010) and Qian et al. (2013), produced delayed dates of the first
irrigation application, and significantly underestimated the annual irrigation water amount for the USNe2
site (Figures 3e‐3h). Using IRR_CRI = 0.6, compared to the simulation with IRR_CRI=0.7, greatly improved
the irrigation timing and shifts the simulated first irrigation application ~25 days closer to observations for
soybeans (Figures 3e and 3g and Table 4), but only shifted the first application date slightly for maize about 5
days (Figures 3f and 3h and Table 4). When changing IRR_CRI from 0.7 to 0.5, the modeled first irrigation
application was relatively robust for maize, which was likely associated with its faster growing rate than soy-
beans after seeding (Figures 3a‐3d). To obtain an optimal growth, irrigation water demands for maize appear
earlier than soybeans, narrowing the timing gap between planting and the first application. Similar trends
were also found (Figures 3i‐3l) when using default table LAI values (blue lines in Figures 3a‐3d), but with
larger varying amplitudes for both irrigation timing and total water amount when IRR_CRI changes from
0.7 to 0.5 (e.g., Figures 3k and 3l). Note that all these simulations shown in Figure 3 used actual planting
and harvesting dates only to constrain crop irrigation within growing phases.

The growing‐season length is another crucial factor for capturing the crop irrigation periods (identified
by the first and last application timing). Different methods were used to define the growing season in
previous studies, for example, a threshold of 40% of annual range of greenness fraction in Ozdogan

Figure 5. Same as Figure 3 but for simulations with the growing degree day (GDD)‐based growing season, unit: mm.
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et al. (2010), and crop leaf area greater than zero in Leng et al. (2013). This study tested three different
methods to determine the growing season: from planting to maturing, the LAI threshold, and the GDD
threshold; all used IRR_CRI = 0.65 in the following field‐scale simulations. Utilizing the LAI threshold
(IRR_LAI) ranging from 0 to 0.8 produced a robust performance (Figures 4b and 4d), and both the
irrigation timing (see Table 4) and total amount were well captured for the two maize years. For
soybean, using planting and harvesting dates only (i.e., IRR_LAI = 0) triggered the first irrigation
application too soon (Figure 4a and Table 4), but using the additional LAI constraint (about IRR_LAI
= 0.8–1.6) helped mitigate this problem. Nevertheless, Figure 4c shows a less sensitivity of irrigation
triggering to LAI threshold values for the relatively wet soybean year 2004, evidenced by the
comparable LAI between irrigated and rainfed sites in Figure 3c. Although using default LAI values
produces reasonably robust results for maize (Figures 4f, 4h, 4j, and 4l), more realistic LAI input
helped correctly identify the growing season and capture the first irrigation timing, especially for
soybeans (Figures 4e, 4g, 4i, and 4k and Table 4). The addition of actual harvesting dates helped
capture the last irrigation application timing (Figures 4i and 4l and Table 4).

When using the GDD‐based growing season, results showed a high sensitivity to the minimumGDD trigger-
ing threshold for soybean irrigation over the normal‐climate year 2002 (Figures 5a, 5e, and 5i and Table 4).
The realistic LAI input seemed to help capture the first application timing for soybean irrigation (e.g.,
Figures 5c and 5g and Table 4). While for maize years, the dynamic scheme was able to capture well irriga-
tion applications with a GDD threshold greater than zero (Figures 5b, 5d, 5f, 5h, 5j, and 5l and Table 4). In
the cases of using the not‐so‐accurate default LAI, crop‐specific GDD triggering thresholds for soybean
(IRR_GDD = 400–800) and maize (IRR_GDD = 0–400) helped generate reasonable irrigation simulations
(Figures 5e‐5h and Table 4). Also, the ending timing for crop irrigation was better captured with actual har-
vesting dates (Figures 5i‐5l and Table 4).

Figure 6. (a‐d) Observed (black lines) and modeled (color lines, red for OPTM‐LAI and blue for OPTM‐GDD) daily irriga-
tion water amount (IWA; unit: mm) for 2002‐2005. (e‐h) Same as (a)‐(d) but for accumulated IWA for OPTM‐LAI (unit:
mm). (i‐l) Same as (e)‐(h) but for the OPTM‐GDD run (unit: mm).
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Finally, two simulations, that is, OPTM‐LAI and OPTM‐GDD, were conducted by respectively utilizing an
optimized (i.e., crop‐specific) setting of irrigation‐model parameters for the LAI‐based and GDD‐determined
growing season, and results are shown in Figure 6. Generally, compared to observations (Figures 2a‐2d),
both simulations were capable of reasonably capturing the total water amounts for 2002‐2005 (Figures 6a‐
6d), except for a slight overestimation in 2005 by OPTM‐LAI (Figure 6h). In terms of irrigation timing, both
experiments produced a good estimation of total number of irrigation events (Figures 6a‐6d and Table 4).
The length of irrigation season (from the first to the last irrigation application) was also well modeled,
despite an early shift of ~10 days for the wet soybean year 2004 by OPTM‐LAI (Figure 6g). In the OPTM‐

GDD run, the first application in 2004 and the last application in 2005 were slightly better simulated
(Figure 6k‐6l and Table 4). In other words, accounting for crop‐specific growth seasons is essential in irriga-
tion modeling, especially for soybeans.

The dynamic irrigation scheme in this study was capable of realistically reproducing actual irrigation appli-
cations at the field scale, by utilizing crop‐specific triggering thresholds to constrain the growing season (e.g.,
IRR_LAI or IRR_GDD) with irrigation requirements. The actual agriculture management data (e.g.,
observed LAI and planting and harvesting dates), together with crop‐specific irrigation triggers, helped cap-
ture both application timing and total water amounts, especially for soybean years.

3.2. Regional‐Scale Irrigation Modeling

One great challenge is to transition field‐scale irrigation modeling to regional scales. This section discusses
the irrigation model performance at regional scale against the USGS county‐level total irrigation water with-
drawals (Figure 7a). We focused on two heavily irrigated corn and soybean areas (Figures 1b and 7a),

Figure 7. (a) The U.S. Geological Survey (USGS) county‐level annual irrigation withdrawals (unit: mm) and (b) total irri-
gation water amount (IWA) modeled by the CNTL run for the year 2000 (unit: mm). (c) Comparison of the CNTL IWA to
the USGS‐reported values at the county level. The coefficient of determination (R2), mean bias error (MBE), and root‐
mean‐square error (RMSE) are also presented for Nebraska (red, 93 counties) and Lower Mississippi River Basin (LMRB;
blue, 76 counties).
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namely, Nebraska in the central plains and LMRB, with the total irrigation water amount peaking around
200–300 mm in southeastern Nebraska and 300–600 mm in eastern Arkansas.

Total IWA simulated by CNTL (Figure 7b), which was heavily constrained by the input irrigation fraction
map (Figure 1a), captured well the spatial pattern of the two major irrigated areas. However, compared to
the USGS total irrigation withdrawals in Figure 7a, the CNTL run significantly overestimated IWA in south-
eastern Nebraska and underestimated it in LMRB (Figures 7b and 7c), when using IRR_CRI = 0.65 as in the
optimized field‐scale simulations. The growing season in CNTL was determined by planting and harvesting
dates only (i.e., from seeding to maturing). Several irrigation parameters such as IRR_LIM and IRR_CRI
could contribute to these biases. For central‐pivot irrigation systems considered in this study, the daily max-
imum water amount for irrigation (i.e., IRR_LIM) of 25‐40 mm plays a limited role in mitigating the model
biases of total water requirements. For example, using IRR_LIM = 70 mm (not shown) only increased the
modeled total irrigation amount to ~270 mm in eastern Arkansas, where the USGS‐reported value was up
to 330 mm and even higher (Figure 7a).

The maximum allowable soil‐water depletion (i.e., IRR_CRI) depends on both soil type and crop type
(Sorooshian et al., 2012), and actual crop conditions and risk level that farmers use to make irrigation deci-
sions. Hence, we calibrated IRR_CRI at the county level by perturbing it between 0.5 and 0.9 at a regular
interval of 0.05, similar to the study of Leng et al. (2013) for a weighted factor corresponding to setting the
target SM. Figure 8a showed that the calibrated IRR_CRI in southeastern Nebraska is ~0.55, which agreed
well with thresholds used in previous studies (e.g., 0.5 in Ozdogan et al., 2010, and Qian et al., 2013); while
for LMRB, IRR_CRI was increased to 0.7 or higher in the northwestern part and decreased to ~0.55 in south-
eastern part. For wheat (ripening), themaximum allowable water depletion was recommended as high as 0.9
by Hanson et al. (2004), consistent with calibrated values in western Kansas (Figure 8a), where winter wheat
mainly grows (Figures 1b and 1e). Using calibrated IRR_CRI values in the OPTM2D run produced a better

Figure 8. (a) Calibrated IRR_CRI values at the county level over irrigated lands. (b) Total irrigation water amount (IWA;
unit: mm) modeled by the OPTM2D run for 2000. The county‐level comparison of the OPTM2D‐modeled total irrigation
water use to the U.S. Geological Survey (USGS)‐reported values for (c) Nebraska and (d) Lower Mississippi River Basin
(LMRB; unit: mm).
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simulation of total IWA and significantly reduced the overestimations in southeastern Nebraska and
underestimations in LMRB with IRR_CRI = 0.65 (Figures 7a and 8b‐8d). The coefficients of
determination were increased from 0.86 in CNTL to 0.98 in OPTM2D for Nebraska and from 0.48 to 0.89
for LMRB. The mean bias error and root‐mean‐square error for the OPTM2D run were greatly reduced
as well.

Nevertheless, IWA was underestimated for counties in western Colorado, even with IRR_CRI greater
than 0.9 (not shown), and such underestimation might be caused by uncertainties in the input irrigation
fractional area as pointed out by Leng et al. (2013). Additionally, submerged rice fields with greater irri-
gation demands were not taken into account in this study, which could be another essential factor con-
tributing to underestimations in some southern irrigated lands (e.g., in eastern Arkansas), and
calibrated IRR_CRI values of around 0.9 compensated this deficiency of the irrigation scheme to some
extent (Figures 8a, 8b, and 8d). Due to the lack of detailed data sets of irrigation water amounts for each
crop type as well as application timing at the regional scale, it is difficult at this stage to further quantify
those uncertainties.

Note that although the OPTM2D run captured well total irrigation amounts as in previous studies (e.g., Leng
et al., 2013; Ozdogan et al., 2010; Qian et al., 2013), the application timing could be misrepresented at least
for soybeans, which required additional LAI or GDD constraints to help locate the first application for soy-
beans, as indicated by field‐scale modeling results (see Figures 4a, 4c, 5a, and 5c). If employing additional
constraints, that is, IRR_LAI = 1.5 or IRR_GDD = 650 for soybeans as in optimized field‐scale simulations
(Figure 6), the OPTM2D run would underestimate the total irrigation amounts in LMRB, where soybean

Figure 9. Monthly average changes (OPTM2Dminus NOIRR) in (a‐c) 2‐m air temperature (T2, unit: K), (d‐f) 2‐m specific
humidity (Q2, unit: g/kg), (g‐i) sensible heat flux (HFX, unit: W/m2), and (j‐l) latent heat flux (LH, unit: W/m2) for June,
July, and August, 2000.
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irrigation was dominant (Figures 1b and 1d). Therefore, detailed model evaluation of irrigation timing or
crop‐specific irrigation amounts are essential for more robust parameter calibrations including IRR_CRI
and IRR_LAI or IRR_GDD, and improvements of irrigation modeling when such data sets are available at
regional scales.

3.3. Impacts of Irrigation on Surface Hydrometeorology

This section assesses the effects of irrigation on surface hydrometeorological conditions using the
OPTM2D run, which simulated reasonably well the total irrigation water by employing calibrated
IRR_CRI values, especially in two major irrigated areas. HRLDAS used the lowest model‐level (~30m)
meteorological conditions from NARR as the atmospheric forcing, so it was possible to diagnose 2‐m
air temperature and humidity, in addition to the HRLDAS standard output variables such as sensible
and latent heat fluxes, and SM.

As demonstrated by many previous studies (e.g., Chen et al., 2018; Cook et al., 2015; Haddeland et al.,
2006; Leng et al., 2013; Ozdogan et al., 2010; Pei et al., 2016; Qian et al., 2013; Sacks et al., 2009), irriga-
tion has great influences on land surface water and energy budgets, including the cooling and moistening
effects and the repartitioning of sensible and latent heat fluxes shown in Figure9 for the OPTM2D run. In
August when the differences between the OPTM2D and NOIRR runs generally reached maxima, the
modeled near‐surface air temperature decreased by 0.8–1.2 K in southeastern Nebraska and by up to
~1.4 K in eastern Arkansas, while 2‐m air humidity increased around 1.2–1.8 g/kg and even greater than
2.4 g/kg over the two above heavily irrigated areas. The degree of cooling or moistening shown here was
highly correlated with the total irrigation water amounts (Figures 7a and 8b) and was largely on par with
Chen et al. (2018).

Accordingly, the surface energy budget over irrigated regions was also modified (Figs 9g‐9l), by shifting sen-
sible heat flux (e.g., a decrease in August of ~60 W/m2 in southeastern Nebraska and ~105 W/m2 in eastern
Arkansas, respectively) to latent heat flux (e.g., an increase in August of ~75 W/m2 over southeastern
Nebraska and even higher than 120 W/m2 around eastern Arkansas).

Figure 10. Monthlymean changes (OPTM2Dminus NOIRR) in (a‐c) total SMC (unit: mm), (d‐f), accumulated latent heat
(LH; unit: mm), and (g‐i) total runoff (unit: mm) for June, July, and August, 2000.
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Moreover, Figure 10 showed the monthly changes in surface water cycle components induced by irriga-
tion. Except for the two heavily irrigated lands in Nebraska and LMRB, irrigation increased summer eva-
poration, SM storage, and runoff roughly by less than 20 mm. However, in regions with higher irrigation
fractions in Nebraska and LMRB, most of irrigation water was used to increase SM and evaporation,
rather than runoff. For instance, in August when the cooling and moistening effects of irrigation peaked,
the modeled total SMC significantly increased by ~60 mm in southeastern Nebraska and by ~140 mm
around eastern Arkansas, respectively (Figures 10a‐10c). While the increase in monthly accumulated
latent heat flux (i.e., evaporation) was up to ~80 mm in southeastern Nebraska and ~120 mm in eastern
Arkansas (Figures 10d‐10f).

When averaged over irrigated grids in Nebraska (Figure 11), the OPTM2D‐modeled net increases in total
SMC were about 3.5 mm (~32% of the total changes in SMC, LH, and runoff) in June and July but rose up
to ~7.9 mm (~24% of total water changes) in August. Evaporation was the biggest sink term of irrigation
water for Nebraska, about 6–23 mm, contributing to 59–72% of total water changes from June to
September. While for LMRB, the net increase in total SMC (~9.3 mm, accounting for ~50% of total water
changes) slightly exceeded that for evaporation (~7.2 mm, accounting for ~38% of total water changes) in
June. In July and August, evaporation (~35 mm) was the biggest sink term, especially in August when the
net change in total SMC was negative. Runoff was the smallest sink term for both irrigated regions, lower
than 12% of total water changes in each month. Compared to OPTM2D, the CNTL‐produced total water
changed greater (smaller) in Nebraska (LMRB), as a result of overestimations (underestimations) of its simu-
lated irrigation amounts.

Figure 12 shows daily‐average differences in surface hydrometeorological conditions between simulations
by no‐irrigation, CNTL, and OPTM2D averaged for Nebraska and LMRB. In terms of irrigation timing,
the OPTM2D‐modeld first application date was around 18 May in Nebraska (~2 weeks later than the
CNTL run) and 28 April in LMRB (~42 days earlier than the CNTL run). The last application dates modeled
by the two simulations were comparable. Capturing correctly those first application dates were essential for
OPTM2D to better simulate the annual total irrigation amounts. Compared to OPTM2D, the irrigation per-
iod (from the first to last application) in the CNTL run was longer (shorter) in Nebraska (LMRB), thus over-
estimated (underestimated) total irrigation amounts in Nebraska (LMRB). Compared to the USGS‐reported
total irrigation withdrawals, the CNTL run produced an overestimation of ~55 mm in Nebraska and an
underestimation of ~30mm in LMRB. The cooling andmoistening effects induced by irrigation were accord-
ingly overestimated (underestimated) in Nebraska (LMRB) by the CNTL run, as well as the surface energy
shift from sensible to latent heat flux. The differences in irrigation timing produced noticeable differences in
air temperature, humidity, and surface heat fluxes in May and June.

Figure 11. Monthly net changes (OPTM2D or CNTL minus NOIRR, unit: mm) averaged over irrigated grids in Nebraska
and Lower Mississippi River Basin (LMRB) for total runoff, accumulated latent heat (LH), and total soil moisture content
(SMC) from May to September, 2000.
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4. Conclusion and Discussion

The real‐world irrigation application is usually crop specific (McDermid et al., 2017), and each type of crop
has distinct irrigation timing and water requirements. To mimic these, this study incorporated a dynamic
irrigation scheme into the Noah‐MP LSM using the root‐zone SMA and the growing season as two main irri-
gation triggers as in previous studies (e.g., Leng et al., 2013; Ozdogan et al., 2010). The unique aspect of this
work is to assess the modeling of both the timing and amounts of crop‐specific irrigation applications by
using various constraints including crop‐specific agriculture management data and to highlight the necessity
of parameter calibration when transitioning irrigation models from field to regional scales. Compared to
Ozdogan et al. (2010) and Leng et al. (2013), this study conducted a systematic validation of the performance
of modeled irrigation timing, which is shown to be more substantial at small and subseasonal scales than at
large and interannual scales (Lawston et al., 2017). In addition, crop‐specific growth stages with different
irrigation demands have been taken into account in our scheme but neglected by Ozdogan et al. (2010)
and Leng et al. (2013).

A number of field‐scale simulations were conducted to understand the general behavior of the dynamic irri-
gation scheme and its sensitivity to various parameters using observations from two contrasting (i.e.,

Figure 12. (a and b) Daily accumulated irrigation water amount (IWA, unit: mm) and daily average differences (CNTL or
OPTM2Dminus NOIRR) in (c and d) T2 (unit: K), (e and f) Q2 (unit: g/kg), (g and h) HFX (unit: W/m2), and (i and j) latent
heat (LH; unit: W/m2), all of which were averaged over irrigated grids in Nebraska and Lower Mississippi River Basin
(LMRB) from April to October 2000.
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irrigated and rainfed) AmeriFlux sites near Mead, Nebraska. Results showed that the irrigation timing and
amount for maize and soybeans are different due to their distinct growth characteristics and related water
demands. Therefore, using crop‐specific triggering thresholds for growing‐season length and soil‐moisture
to constrain irrigation applications was critical for capturing the first application timing and the annual total
water amount, especially for soybeans. With a well‐calibrated SM triggering threshold of IRR_CRI = 0.65,
using the growing season length defined solely by planting and harvesting dates could reasonably reproduce
the first irrigation application for maize.

For soybean, however, the additional use of LAI or GDD constraint (e.g., IRR_LAI = 1.5 or IRR_GDD= 650)
for defining growing season length was necessary to mitigate an early shift of the modeled first application.
More importantly, while the irrigation model could tolerate a certain range of LAI threshold values, realistic
LAI input was still crucial for identifying the LAI‐based growing season as additional constraint to planting
and harvesting dates. When using the GDD‐based growing‐season approach, actual harvesting dates help
determine correctly the timing of the last irrigation.

One great challenge in this study is to transition irrigation modeling from field to regional scales. It is
relatively easy to capture the spatial pattern of irrigated regions even with field‐scale calibrated soil‐
moisture triggering threshold, because it is heavily constrained by 500‐m MODIS irrigation fraction.
However, compared to the USGS county‐level irrigation water withdrawals circa 2000, using IRR_CRI
= 0.65, significantly overestimated (underestimated) total irrigation amount in southeastern Nebraska
(in LMRB). In fact, IRR_CRI depends on both soil type and crop type (Sorooshian et al., 2012), so we cali-
brated it at the county level following the approach of Leng et al. (2013). The calibrated thresholds agreed
well to the values of IRR_CRI from previous studies for maize and soybean (e.g., Ozdogan et al., 2010;
Qian et al., 2013) or for winter wheat (Hanson et al., 2004). Even though this study did not explicitly
simulate rice crop irrigation, the anomalously high values (e.g., IRR_CRI>0.9) in eastern Arkansas actu-
ally reflected the irrigation characteristics of rice fields, which demonstrated the robustness of our calibra-
tion procedure. As a result, using calibrated county‐level IRR_CRI values significantly mitigated
overestimations in southeastern Nebraska and underestimations in LMRB. On the other hand, the input
fractional area of irrigated lands could greatly contribute to the general uncertainties in irrigation model-
ing (Leng et al., 2013).

The land surface hydrometeorological conditions over Nebraska and LMRB were greatly modified by irriga-
tion, including the cooling effect of 0.8–1.4 K, moistening effect of 1.2–2.4 g/kg, reduction in sensible heat
fluxes by 60 to105 W/m2, and increase in latent heat fluxes by 75 to 120 W/m2. Those local effects were con-
sistent with the observational study by Chen et al. (2018). Note that HRLDAS‐simulated irrigation effects
concentrated over the irrigated lands due to its offline setting, and future coupling runs with atmospheric
models are necessary to improve the understanding of irrigation effects on regional land‐atmosphere inter-
actions. For most irrigated regions, the irrigated water was roughly partitioned into increased SM, evapora-
tion, and runoff (less than 20 mm/month). However, in Nebraska and LMRB with higher irrigation
fractions, most of irrigation water was used to increase SM and evaporation, rather than runoff.

Overall, it is of importance to use appropriate crop‐specific soil‐moisture triggers and growing‐season length
constrained by agriculture management data in reasonably modeling annual total irrigation water demands
at regional scales, as in previous studies (e.g., Leng et al., 2013; Ozdogan et al., 2010). Some irrigation para-
meters such as IRR_CRI are likely dependent of the spatial scales of simulation, as indicated by Iizumi et al.
(2014) for parameters in a cropmodel. The field‐calibrated IRR_CRI value was location specific and unrepre-
sentative in regional irrigation modeling, thus causing significant model errors at the regional scale. Future
efforts are required to investigate the sensitivity of critical parameters in the irrigation scheme to grid inter-
val. In addition to the model resolution, many other factors, for example, input data sets such as irrigation
fraction, irrigation schemes, and parameters used, could also contribute to the uncertainties inmodeling irri-
gation. While regional calibration helps improve model results, a potential over calibration may mask com-
pensate problems caused by lack of presentation of physical processes. For example, flood irrigation over
submerged rice fields was not considered in our irrigation scheme, resulting in underestimations in eastern
Arkansas in the CNTL run, which was mitigated by IRR_CRI calibration. Hence, there is a need for further
model enhancements by incorporating these physical processes and different application methods (Lawston
et al., 2015).
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Moreover, our irrigation scheme, as demonstrated by field‐scale simulations, could capture the crop‐
specific application timing, a crucial factor but often ignored in previous irrigation modeling studies
(Leng et al., 2013; Ozdogan et al., 2010). However, lack of observed irrigation timing and crop‐specific
parameters at regional scales, transferring the evaluation, and parameter‐constraint methods from field
to regional scales are very limited for now. For further quantifications of model uncertainties and calibra-
tions of crop‐specific parameters (e.g., IRR_LAI and IRR_GDD), it is essential to conduct a detailed eva-
luation of simulated irrigation amounts and timing (which is now missing) for each crop type at the
regional scale when data sets are available. This work showed that detailed agriculture data (e.g., 30‐m
CropScape and crop‐specific planting/harvesting dates) help constrain/improve models. However, trans-
ferring this work to a data‐scarce region presents challenges, and a strategy for compensating the lack
of key data needs to be developed in future work. Future efforts will need to be directed to connecting
irrigation water with water resources (e.g., rivers, reservoirs, and groundwater pumping; Leng et al.,
2014, 2015, 2017) and evaporative losses (Malek et al., 2017) during irrigation in the context of modeling
the full components of water cycle. Since the fundamental purpose of irrigation is to increase crop yields,
our future work will focus on evaluating the impacts of irrigation modeling on crop growth and yields
(Leng et al., 2016).
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